Isolation and Screening of Yeasts That Ferment d-Xylose Directly to Ethanol.
نویسندگان
چکیده
Natural habitats of yeasts were examined for the presence of strains able to produce ethanol from d-xylose. Black knots, insect frass, and tree exudates were screened by enrichment in liquid d-xylose-yeast extract medium. These and each d-xylose-assimilating yeast in a collection from cactus fruits and Drosophila spp. were tested for alcohol production from this sugar. Among the 412 isolates examined, 36 produced more than 1 g of ethanol liter from 20 g of d-xylose liter, all under aerated conditions. Closer examination of the strains indicated that their time courses of d-xylose fermentation followed different patterns. Some strains produced more biomass than ethanol, and among these, ethanol may or may not be assimilated rapidly after depletion of d-xylose. Others produced more ethanol than biomass, but all catabolized ethanol after carbohydrate exhaustion. Ethanol production appeared best at low pH values and under mild aeration. Possible correlations between the nutritional profiles of the yeasts and their ability to produce ethanol from d-xylose were explored by multivariate analysis. d-Xylose appeared slightly better utilized by yeasts which rate poorly in terms of fermentation. The fermentation of d-glucose had no bearing on d-xylose fermentation. No specific nutritional trait could discriminate well between better d-xylose fermentors and other yeasts.
منابع مشابه
Alcoholic Fermentation of d-Xylose by Yeasts.
Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces ...
متن کاملDNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast
Lignocellulosic biomass, which contains large amounts of glucose and xylose, is the new ideal feedstock for ethanol production used as renewable liquid fuel for transportation. The naturally occurring Saccharomyces yeasts traditionally used for industrial ethanol production are unable to ferment xylose. We have successfully developed genetically engineered Saccharomyces yeasts that can effectiv...
متن کاملGenetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-num...
متن کاملGenetic engineering for improved xylose fermentation by yeasts.
Xylose utilization is essential for the efficient conversion of lignocellulosic materials to fuels and chemicals. A few yeasts are known to ferment xylose directly to ethanol. However, the rates and yields need to be improved for commercialization. Xylose utilization is repressed by glucose which is usually present in lignocellulosic hydrolysates, so glucose regulation should be altered in orde...
متن کاملBulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae
Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 50 6 شماره
صفحات -
تاریخ انتشار 1985